Alterations of the perivascular dystrophin-dystroglycan complex following brain lesions: an immunohistochemical study in rats.

نویسندگان

  • M Kálmán
  • J Mahalek
  • A Adorján
  • I Adorján
  • K Pócsai
  • Z Bagyura
  • S Sadeghian
چکیده

Dystroglycan is a laminin receptor, which with dystrophins and other components forms the dystrophin-dystroglycan complex. It has an important role in the formation of gliovascular connections, cerebral vascularisation and blood-brain barrier. Dystroglycan consists of two sub-units, α and β. Previous studies demonstrated that the β-dystroglycan immunoreactivity of cerebral vessels temporarily disappeared in the area adjacent to the lesion, whereas the vascular laminin which is not immunoreactive in the intact brain became detectable. The present study extends these investigations over other components of the complex: utrophin, α1-syntrophin and α1-dystrobrevin. The experiments were performed on adult rats. The lesions were stab wounds or cryogenic lesions in deep ketamine-xylasine narcosis. Following survival periods 2 to 30 days, the animals were perfused and floating brain sections were processed for fluorescent immunohistochemistry. The α1-dystrobrevin, like β-dystroglycan, vanished temporarily around the lesion. The immunoreactivity of utrophin changed in a similar way to that of laminin. In intact brains they were confined to the entering segments of the vessels and to the circumventricular organs. Following lesions their immunoreactivity manifested in the vessels around the lesions. However, utrophin followed laminin with a delay: their peaks were about POD (postoperative days) 21 and 7, respectively. Only immunoreactivity of α1-syntrophin appeared in the reactive astrocytes, peaking at POD 14. Double-labeling proved its co-localization with GFAP. Cryogenic lesions had similar immunohistochemical effects, but provided more suitable samples for Western blot analysis, which proved the altered levels of α1-dystrobrevin and α1-syntrophin. The phenomena may help to monitor the post-lesion vascular processes and the alterations of the gliovascular connections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for a role of dystroglycan regulating the membrane architecture of astroglial endfeet

The dystrophin-dystroglycan complex (DDC) is a molecular array of proteins in muscle and brain cells. The central component of the DDC is dystroglycan, which comprises α- and β-subunits. α-Dystroglycan (α-DG) binds to extracellular matrix components such as agrin, whereas β-dystroglycan (β-DG) is a membrane-spanning protein linking α-DG to the cytoskeleton and other intracellular components suc...

متن کامل

Age-related dystrophin-glycoprotein complex structure and function in the rat extensor digitorum longus and soleus muscle.

This study tested the hypothesis that age-related changes in the dystrophin-glycoprotein complex (DGC) may precede age-associated alterations in muscle morphology and function. Compared to those in adult (6 month) rats, extensor digitorum longus (EDL) and soleus muscle mass was decreased in old (30 month) and very old (36 month) Fischer 344/NNiaHSD x Brown Norway/BiNia rats. The amount of dystr...

متن کامل

A stoichiometric complex of neurexins and dystroglycan in brain

In nonneuronal cells, the cell surface protein dystroglycan links the intracellular cytoskeleton (via dystrophin or utrophin) to the extracellular matrix (via laminin, agrin, or perlecan). Impairment of this linkage is instrumental in the pathogenesis of muscular dystrophies. In brain, dystroglycan and dystrophin are expressed on neurons and astrocytes, and some muscular dystrophies cause cogni...

متن کامل

Identification of New Dystroglycan Complexes in Skeletal Muscle

The dystroglycan complex contains the transmembrane protein β-dystroglycan and its interacting extracellular mucin-like protein α-dystroglycan. In skeletal muscle fibers, the dystroglycan complex plays an important structural role by linking the cytoskeletal protein dystrophin to laminin in the extracellular matrix. Mutations that affect any of the proteins involved in this structural axis lead...

متن کامل

Syntrophin-dependent expression and localization of Aquaporin-4 water channel protein.

The Aquaporin-4 (AQP4) water channel contributes to brain water homeostasis in perivascular astrocyte endfeet where it is concentrated. We postulated that AQP4 is tethered at this site by binding of the AQP4 C terminus to the PSD95-Discs large-ZO1 (PDZ) domain of syntrophin, a component of the dystrophin protein complex. Chemical cross-linking and coimmunoprecipitations from brain demonstrated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Histology and histopathology

دوره 26 11  شماره 

صفحات  -

تاریخ انتشار 2011